~risma
| Satellites
o B I —

FFRICGR

1

Mars sample return

When will the dream come true?

Michel Viso (DSP/SME) & Pierre William Bousquet (DC  T/PO/PM)
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International Mars Sample Return —
Conference

An International Conference co-hosted by
ESA and CNES in cooperation with
NASA and the
International Mars Exploration Working Group (IMEWG)
9 - 10 July 2008
Auditorium, Bibliotheque Nationale de France, Paris -
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@Rs Why MSR?

There are three primary reasons why
MSR would be of such high value to

science.

1. Complex sample preparation,
sample decisions

Image courtesy Dimitri Papanastassiot
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'J'mage courtesy Can; Allen |



@RS Why MSR?

2. Analysis Adaptability
» Not limited by advance hypotheses

3. Instrumentation

» Best accuracy/precision

» Diversity—results could be
confirmed by alternate methods

+ Instruments not limited by mass,
power, V, T, reliability, efc.

» Calibration, positive and negative
control standards

» Future instrument developments

courtesy Kevin McKeegan
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JSC TEM lab, courtesy Lisa Vidonic
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Viable Candidate for 1st

Ref.] Goal Objective Nickname MSR*
1 I Habitability YES
2 I Pre-biotic, life YES
3 1, 1 water/ rock YES
4 1 Geochronology YES
5 I, 1l Sedimentary record YES
6 n Planetary evolution YES
7 I Regolith Processes YES
8 vV Risks to human explorers YES
9 I, 1l Oxidation YES
10 Il Gas Chemistry YES
11 Il Polar NO

*NOTE: Contingent on landing site selection.
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Relationship between
Objectives and Sample

Ref.

Goal

Objective Nickname

Habitability

Pre-biotic, life

I,

water/ rock

Geochronology

I, 1

Sedimentary record

Planetary evolution

Sedimentary

suite

Hydrothermal

main types of required samples

Low-T W/R

Resolved Suite

Depth-

Dust

Atmospheric

Gas
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™ |Regolith
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I L suite
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Proposed

Sample Type sl SellliE sample Sample
P yp Properties floor, 1st P P
MSR (gm) Mass

Case B. Cache from a previous mission is NOT returned

Sedimentary suite rock
Hydrothermal suite rock
Low-T WIR suite rock 20 10 200
Igneous Suite rock
Other rock
Lander-based sample | rock or reg. 4 20 80
Regolith granular 4 15 60
Dust granular 1 5 9
Ice ice or liquid 0
Atmospheric Gas gas 1 0.001
Cache fru_am. previous rocks 0
mission
TOTAL 30 345
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Building blocks

Functional description

Tech. Development need

a) Orbiter

* Performs data relay with the Lander and
rover from Mars orbit

» Carries rendezvous and capture system and
Earth return vehicle with Earth Entry Vehicle
+ Captures sample container in Mars orbit

* Releases ERV/EEV with the Lander and the
rover

» Autonomous rendezvous in
Mars orbit (sensors, GNC,

algorithms and operations)

b) Earth Return Vehicle
(ERV)

* Carries and released the EEV.
* Diverts to a non-Earth impact trajectory
from Mars orbit

None

c) Earth Entry Vehicle
(EEV)

* |s carried by the ERV
* Re-enters Earth’'s atmosphere and lands
with samples returned from Mars

+ Sample thermal protection
* End-to-end system: no entry
ever done from Mars
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Building blocks Functional description Tech. Development need

* Provides propulsion/fuel to reach Mars

: : ; None
d) Propulsion Module And arisert RO ariit
* Perform rendezvous manoevers and
propels the ERV from Mars orbit (?)
e) Rendezvous & » Detects and captures the sample container | * Low light detection
Capture System in Mars orbit * Autonomy

* Robust sealing and
containment verification
technologies

f) Sample containment + Seals sample container and verifies flight

& verification containment on return trip
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Do we need to sleep
now to live our dreams later?

/
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"There are three or four technologies that stick
out—sample handling with planetary
protection, the Mars ascent vehicle, the Earth-
based receiving facility anthe autonomous
on-or bit rendezvous,” says Scott Hubbard of
Stanford University, who served as NASA's
first Mars program director. "All are needed to
make a sample-return viable."



